Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400424, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682649

RESUMO

High-performance rechargeable aluminum-sulfur batteries (RASB) have great potential for various applications owing to their high theoretical capacity, abundant sulfur resources, and good safety. Nevertheless, the practical application of RASB still faces several challenges, including the polysulfide shuttle phenomenon and low sulfur utilization efficiency. Here, we first developed a synergistic copper heterogeneous metal oxide MoO2 derived from polymolybdate-based metal-organic framework as an efficient catalyst for mitigating polysulfide diffusion. This composite enhances sulfur utilization and electrical conductivity of the cathode. DFT calculations and experimental results reveal the catalyst Cu/MoO2@C not only effectively anchors aluminum polysulfides (AlPSs) to mitigate the shuttle effect, but also significantly promotes the catalytic conversion of AlPSs on the sulfur cathode side during charging and discharging. The unique nanostructure contains abundant electrocatalytic active sites of oxide nanoparticles and Cu clusters, resulting in excellent electrochemical performance. Consequently, the established RASB exhibits an initial capacity of 875 mAh g-1 at 500 mA g-1 and maintains a capacity of 967 mAh g-1 even at a high temperature of 50 °C.

2.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38157559

RESUMO

Antibiotic-resistant bacteria and associated infectious diseases pose a grave threat to human health. The antibacterial activity of metal nanoparticles has been extensively utilized in several biomedical applications, showing that they can effectively inhibit the growth of various bacteria. In this research, copper-doped polydopamine nanoparticles (Cu@PDA NPs) were synthesized through an economical process employing deionized water and ethanol as a solvent. By harnessing the high photothermal conversion efficiency of polydopamine nanoparticles (PDA NPs) and the inherent antibacterial attributes of copper ions, we engineered nanoparticles with enhanced antibacterial characteristics. Cu@PDA NPs exhibited a rougher surface and a higher zeta potential in comparison to PDA NPs, and both demonstrated remarkable photothermal conversion efficiency. Comprehensive antibacterial evaluations substantiated the superior efficacy of Cu@PDA NPs attributable to their copper content. These readily prepared nano-antibacterial materials exhibit substantial potential in infection prevention and treatment, owing to their synergistic combination of photothermal and spectral antibacterial features.


Assuntos
Indóis , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Polímeros/farmacologia , Antibacterianos/farmacologia
3.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894409

RESUMO

PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.

4.
Inorg Chem ; 62(38): 15440-15449, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37700509

RESUMO

Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation batteries due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as the polysulfide shuttle and the growth of lithium dendrites. Herein, we introduce a bifunctional K3PW12O40/graphene oxide-modified polypropylene separator (KPW/GO/PP) as a highly effective solution for mitigating polysulfide diffusion and protecting the lithium anode in Li-S batteries. By incorporating KPW into a densely stacked nanostructured graphene oxide (GO) barrier membrane, we synergistically capture and rapidly convert lithium polysulfides (LiPSs) electrochemically, thus effectively suppressing the shuttling effect. Moreover, the KPW/GO/PP separator can stabilize the lithium metal anode during cycling, suppress dendrite formation, and ensure a smooth and dense lithium metal surface, owing to regulated Li+ flux and uniform Li nucleation. Consequently, the constructed KPW/GO/PP separator delivered a favorable initial specific capacity (1006 mAh g-1) and remarkable cycling performance at 1.0 C (626 mAh g-1 for up to 500 cycles with a decay rate of 0.075% per cycle).

5.
Small ; 19(48): e2304515, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541304

RESUMO

Al-S battery (ASB) is a promising energy storage device, notable for its safety, crustal abundance, and high theoretical energy density. However, its development faces challenges due to slow reaction kinetics and poor reversibility. The creation of a multifunctional cathode material that can both adsorb polysulfides and accelerate their conversion is key to advancing ASB. Herein, a composite composed of polyoxometalate nanohybridization-derived Mo2 C and N-doped carbon nanotube-interwoven polyhedrons (Co/Mo2 C@NCNHP) is proposed for the first time as an electrochemical catalyst in the sulfur cathode. This composite improves the utilization and conductivity of sulfur within the cathode. DFT calculations and experimental results indicate that Co enables the chemisorption of polysulfides while Mo2 C catalyzes the reduction reaction of long-chain polysulfides. X-ray photoelectron spectroscopy (XPS) and in situ UV analysis reveal the different intermediates of Al polysulfide species in Co/Mo2 C@NCNHP during discharging/charging. As a cathode material for ASB, Co/Mo2 C@NCNHP@S composite can deliver a discharge-charge voltage hysteresis of 0.75 V with a specific capacity of 370 mAh g-1 after 200 cycles at 1A g-1 .

6.
Angew Chem Int Ed Engl ; 62(36): e202306528, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37464580

RESUMO

Developing polyoxometalate-cyclodextrin cluster-organic supramolecular framework (POM-CD-COSF) still remains challenging due to an extremely difficult task in rationally interconnecting two dissimilar building blocks. Here we report an unprecedented POM-CD-COSF crystalline structure produced through the self-assembly process of a Krebs-type POM, [Zn2 (WO2 )2 (SbW9 O33 )2 ]10- , and two ß-CD units. The as-prepared POM-CD-COSF-based battery separator can be applied as a lightweight barrier (approximately 0.3 mg cm-2 ) to mitigate the polysulfide shuttle effect in lithium-sulfur batteries. The designed Li-S batteries equipped with the POM-CD-COSF modified separator exhibit remarkable electrochemical performance, attributed to fast Li+ diffusion through the supramolecular channel of ß-CD, efficient polysulfide-capture ability by the dynamic host-guest interaction of ß-CD, and improved sulfur redox kinetics by the bidirectional catalysis of POM cluster. This research provides a broad perspective for the development of multifunctional supramolecular POM frameworks and their applications in Li-S batteries.

7.
Biomed Pharmacother ; 164: 114980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301135

RESUMO

Currently, there are several treatments approaches available for lung cancer; however, patients who develop drug resistance or have poor survival rates urgently require new therapeutic strategies for lung cancer. In autophagy, damaged proteins or organelles are enclosed within autophagic vesicles with a bilayer membrane structure and transported to the lysosomes for degradation and recirculation. Autophagy is a crucial pathway involved in the clearance of reactive oxygen species (ROS) and damaged mitochondria. Meanwhile, inhibiting autophagy is a promising strategy for cancer treatment. In this study, we found for the first time that Cinchonine (Cin) can act as an autophagy suppressor and exert anti-tumor effects. Cin significantly inhibited the proliferation, migration, and invasion of cancer cells in vitro and the tumor growth and metastasis in vivo, without obvious toxic effects. We found that Cin suppressed the autophagic process by blocking autophagosome degradation through the inhibition of the maturation of lysosomal hydrolases. Cin-mediated autophagy inhibition resulted in the elevated ROS level and the accumulation of damaged mitochondria, which in turn promoted apoptosis. N-acetylcysteine, a potential ROS scavenger, significantly suppressed Cin-induced apoptosis. Additionally, Cin upregulated programmed death-ligand 1 (PD-L1) expression in lung cancer cells by inhibiting autophagy. Compared with monotherapy and control group, the combined administration of anti-PD-L1 antibody and Cin significantly reduced tumor growth. These results suggest that Cin exerts anti-tumor effects by inhibiting autophagy, and that the combination of Cin and PD-L1 blockade has synergistic anti-tumor effects. The data demonstrates the significant clinical potential of Cin in lung cancer treatment.


Assuntos
Autofagia , Neoplasias Pulmonares , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/patologia , Apoptose , Lisossomos/metabolismo , Imunoterapia , Linhagem Celular Tumoral
8.
Adv Sci (Weinh) ; 10(24): e2302215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337394

RESUMO

Sulfur cathodes in Li-S batteries suffer significant volumetric expansion and lack of catalytic activity for polysulfide conversion. In this study, a confined self-reduction synthetic route is developed for preparing nanocomposites using diverse metal ions (Mn2+ , Co2+ , Ni2+ , and Zn2+ )-introduced Al-MIL-96 as precursors. The Ni2+ -introduced Al-MIL-96-derived nanocomposite contains a "hardness unit", amorphous aluminum oxide framework, to restrain the volumetric expansion, and a "softness unit", Ni nanocrystals, to improve the catalytic activity. The oxygen-potential diagram theoretically explains why Ni2+ is preferentially reduced. Postmortem microstructure characterization confirms the suppressive volume expansion. The in situ ultraviolet-visible measurements are performed to probe the catalytic activity of polysulfide conversion. This study provides a new perspective for designing nanocomposites with "hardness units" and "softness units" as sulfur or other catalyst hosts.

9.
J Hazard Mater ; 452: 131357, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027926

RESUMO

In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH3, 1O2, ONOO-, •O2- and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Ácido Peracético/farmacologia , Eliminação de Resíduos Líquidos/métodos , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
10.
Front Endocrinol (Lausanne) ; 14: 1126397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936149

RESUMO

Background: Insulin-like growth factor-1 (IGF-1) display a vital role in in the pathogenesis of lung diseases, however, the relationship between circulating IGF-1 and lung disease remains unclear. Methods: Single nucleotide polymorphisms (SNPs) associated with the serum levels of IGF-1 and the outcomes data of lung diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer and idiopathic pulmonary fibrosis (IPF) were screened from the public genome-wide association studies (GWAS). Two-sample Mendelian randomization (MR) analysis was then performed to assess the independent impact of IGF-1 exposure on these lung diseases. Results: Totally, 416 SNPs related to circulating IGF-1 levels among 358,072 participants in UK Biobank. According to a primary casual effects model with MR analyses by the inverse variance weighted (IVW) method, the circulating IGF-1 was demonstrated a significantly related with the risk of asthma (OR, 0.992; 95% CI, 0.985-0.999, P=0.0324), while circulating IGF-1 showed no significant correlation with CODP (OR, 1.000; 95% CI, 0.999-1.001, P=0.758), lung cancer (OR, 0.979, 95% CI, 0.849-1.129, P=0.773), as well as IPIGFF (OR, 1.100, 95% CI, 0.794-1.525, P=0.568). Conclusion: The present study demonstrated that circulating IGF-1 may be causally related to lower risk of asthma.


Assuntos
Asma , Neoplasias Pulmonares , Humanos , Fator de Crescimento Insulin-Like I/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Asma/epidemiologia , Asma/genética
11.
Chem Commun (Camb) ; 59(6): 788-791, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36562392

RESUMO

A novel supramolecular complex Li3Cl[(HPW12O40)(H24C12O6)3(CH3CN)2] {CR-PW12} was confirmed first to apply as a sulfur host in lithium-sulfur batteries. The {CR-PW12}@S cathode exhibits a reversible capacity of 1120 mA h g-1 at 1.0 C and excellent cycle stability.

12.
Angew Chem Int Ed Engl ; 61(41): e202209350, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36006780

RESUMO

The introduction of high-entropy into Prussian blue analogues (PBAs) has yet to attract attention in the field of lithium-sulfur battery materials. Herein, we systematically synthesize a library of PBAs from binary to high-entropy by a facile coprecipitation method. The coordination environment in PBAs is explored by X-ray absorption fine structure spectroscopy, which together with elemental mapping confirm the successful introduction of all metals. Importantly, electrochemical tests demonstrate that high-entropy PBA can serve as polysulfide immobilizer to inhibit shuttle effect and as catalyst to promote polysulfides conversion, thereby boosting its outstanding performance. Additionally, a variety of nanocubic metal oxides from binary to senary are fabricated by using PBAs as sacrificial precursors. We believe that a wide range of new materials obtained from our coprecipitation and pyrolysis methodology can promote further developments in research on PBA systems and sulfur hosts.

13.
ACS Nano ; 16(9): 14569-14581, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36036999

RESUMO

In lithium-sulfur batteries, a serious obstacle is the dissolution and diffusion of long-chain polysulfides, resulting in rapid capacity decay and low Coulombic efficiency. At present, a common practice is designing cathode materials to solve this problem, but this gives rise to reduced gravimetric and volumetric energy densities. Herein, we present a thiodimolybdate [Mo2S12]2- cluster as sulfur host material that can effectively confine the shuttling of polysulfides and contribute its own capacity in Li-S cells. Moreover, the [Mo2S12]2- cluster as a "bidirectional catalyst" can effectively catalyze polysulfide reduction and lithium sulfide oxidation. We further investigate the catalytic mechanism of [Mo2S12]2- clusters by theoretical calculations, in situ spectroscopic techniques, and electrochemical studies. The (NH4)2Mo2S12/S cathodes show good electrochemical performance under a wide range of temperatures. In addition, a pouch cell fabricated with (NH4)2Mo2S12/S cathodes maintains a stable output for more than 50 cycles.

14.
J Fish Dis ; 45(11): 1599-1607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35801398

RESUMO

Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 µg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 µg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.


Assuntos
Bass , Doenças dos Peixes , Magnolia , Nocardiose , Nocardia , Plantas Medicinais , Compostos Alílicos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos de Bifenilo , Doenças dos Peixes/tratamento farmacológico , Nocardiose/tratamento farmacológico , Nocardiose/veterinária , Fenóis , Extratos Vegetais/farmacologia
15.
Neurodegener Dis ; 21(3-4): 93-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34808617

RESUMO

BACKGROUND: Accumulating evidence suggests an implication of neuroinflammation in Alzheimer's disease (AD) pathogenesis. Homoharringtonine (HHT) is an antitumor reagent with anti-inflammatory activity. This study investigates whether and how HHT plays a role in disease progression in a mouse AD model. METHODS: HHT was injected into APP/PS1 mice every other day for 6 months. The effects of HHT on cognitive function were assessed by behavioral assays. ß-Amyloid accumulation was assessed by ELISA analysis of Aß40 and Aß42. Neuronal loss and synaptic function were determined by levels of NeuN, synaptophysin, and PSD95. Neuroinflammation was assessed by glial markers and pro-inflammatory cytokines. Signal transducer and activator of transcription 3 (STAT3) signaling was evaluated by phosphorylated STAT3 and SOCS3 expression. RESULTS: We found that HHT at 2 mg/kg significantly alleviated cognitive deficits in APP/PS1 mice. HHT reduced soluble and insoluble Aß40 and Aß42 accumulation and attenuated the impairments of synaptic function in the AD mouse hippocampus. Finally, HHT inhibited neuroinflammation, suppressed STAT3 activation, and increased SOCS3 expression in the APP/PS1 mouse hippocampus. CONCLUSION: Our results indicate that HHT inhibits disease progression in APP/PS1 mice by suppressing neuroinflammation through modulating the STAT3 signaling. Our findings suggest that HHT may potentially be used for preventing or slowing down AD pathogenesis and warrants further investigation.


Assuntos
Doença de Alzheimer , Mepesuccinato de Omacetaxina , Doenças Neuroinflamatórias , Fator de Transcrição STAT3 , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Presenilina-1/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Mater Horiz ; 8(7): 1976-1984, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846474

RESUMO

A wavelength sensor as a representative optoelectronic device plays an important role in many fields including visible light communication, medical diagnosis, and image recognition. In this study, a wavelength-sensitive detector with a new operation mechanism was reported. The as-proposed wavelength sensor which is composed of two parallel PtSe2/thin Si Schottky junction photodetectors is capable of distinguishing wavelength in the range from ultraviolet to near infrared (UV-NIR) light (265 to 1050 nm), in that the relationship between the photocurrent ratio of both photodetectors and incident wavelength can be numerically described by a monotonic function. The unique operation mechanism of the thin Si based wavelength sensor was unveiled by theoretical simulation based on Synopsys Sentaurus Technology Computer Aided Design (TCAD). Remarkably, the wavelength sensor has an average absolute error of ±4.05 nm and an average relative error less than ±0.56%, which are much better than previously reported devices. What is more, extensive analysis was performed to reveal how and to what extent the working temperature and incident light intensity, and the thickness of the PtSe2 layer will influence the performance of the wavelength sensor.


Assuntos
Raios Infravermelhos , Raios Ultravioleta , Desenho Assistido por Computador , Raios Ultravioleta/efeitos adversos
17.
Biosens Bioelectron ; 107: 230-236, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477123

RESUMO

In this study, on the basis of hierarchical CuInS2-based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS2/NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O2-dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O2-sensitive photocathode and the SOx-catalytic event toward O2 reduction. Based on the sarcosine-controlled O2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS2-based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS2-based heterostructured photocathodic enzymatic sensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Cobre/química , Técnicas Eletroquímicas/instrumentação , Índio/química , Nanoestruturas/química , Sarcosina/análise , Sulfetos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Nanoestruturas/ultraestrutura , Processos Fotoquímicos
18.
Anal Chem ; 90(4): 2749-2755, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359937

RESUMO

Herein we report the strategy of liposome-mediated Cu2+-induced exciton trapping upon CdS quantum dots (QDs) for amplified photoelectrochemical (PEC) bioanalysis application. Specifically, the Cu nanoclusters (NCs)-encapsulated liposomes were first fabricated and then processed with antibodies bound to their external surfaces. After the sandwich immunocomplexing, the confined liposomal labels were subjected to sequential lysis treatments for the release of Cu NCs and numerous Cu2+ ions, which were then directed to interact with the CdS QDs electrode. The interaction of Cu2+ ions with CdS QDs could generate CuxS and form the trapping sites to block the photocurrent generation. Since the photocurrent inhibition is closely related with the Cu NCs-loaded liposomal labels, a novel and general "signal-off" PEC immunoassay could thus be tailored with high sensitivity. Meanwhile, a complementary "signal-on" fluorescent detection could be accomplished by measuring the fluorescence intensity originated from the Cu NCs. This work features the first use of Cu NCs in PEC bioanalysis and also the first NCs-loaded liposomal PEC bioanalysis. More importantly, by using other specific ions/reagents-semiconductors interactions, this protocol could serve as a common basis for the general development of a new class of liposome-mediated PEC bioanalysis.


Assuntos
Técnicas Biossensoriais , Cobre/química , Técnicas Eletroquímicas , Imunoensaio , Lipossomos/química , Nanopartículas Metálicas/química , Compostos de Cádmio/química , Eletrodos , Tamanho da Partícula , Processos Fotoquímicos , Pontos Quânticos/química , Sulfetos/química , Propriedades de Superfície
19.
Sensors (Basel) ; 17(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534844

RESUMO

The real-time estimation of the wide-lane and narrow-lane Uncalibrated Phase Delay (UPD) of satellites is realized by real-time data received from regional reference station networks; The properties of the real-time UPD product and its influence on real-time precise point positioning ambiguity resolution (RTPPP-AR) are experimentally analyzed according to real-time data obtained from the regional Continuously Operating Reference Stations (CORS) network located in Tianjin, Shanghai, Hong Kong, etc. The results show that the real-time wide-lane and narrow-lane UPD products differ significantly from each other in time-domain characteristics; the wide-lane UPDs have daily stability, with a change rate of less than 0.1 cycle/day, while the narrow-lane UPDs have short-term stability, with significant change in one day. The UPD products generated by different regional networks have obvious spatial characteristics, thus significantly influencing RTPPP-AR: the adoption of real-time UPD products employing the sparse stations in the regional network for estimation is favorable for improving the regional RTPPP-AR up to 99%; the real-time UPD products of different regional networks slightly influence PPP-AR positioning accuracy. After ambiguities are successfully fixed, the real-time dynamic RTPPP-AR positioning accuracy is better than 3 cm in the plane and 8 cm in the upward direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...